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We treat the linear Tchebycheff approximation problem for a regression function
fE C2 [0, 1]. A stochastic Remes algorithm which uses only estimates of first
derivatives is proposed and investigated for almost sure convergence and rate of
convergence. 1987 Academic Press, Inc.

1. INTRODUCTION

Methods of stochastic iteration or stochastic approximation are used for
the investigation of functions whose values are observable only with ran
dom noise, especially for the estimate of zeros or minimum points of
regression functions I: IRk ---> IRk and f: IRk ---> IR, respectively. The
Kiefer-Wolfowitz method (see the survey article of Schmetterer [13]) is a
modification of the classical Newton method; here, for the correction vec
tor of the recursion formula, the gradient is replaced by a vector of divided
differences for noise-contaminated function values with spans tending to
zero, the inverse of the Hessian matrix of second partial derivatives is
replaced by the identity matrix, and the whole correction vector is provided
with a discount factor ':I.,,?:°in the nth iteration step, because of noise,
where ':I." ---> ° (n ---> w), L: rt." = w; thus the Kiefer-Wolfowitz method can
be considered as a stochastic gradient method.

In this paper the Tchebycheff approximation problem of minimizing
I!f-(aoho+'" +aNhv)llex. with respect to (a O, ... ,aN)EIR N

+
1 is treated,

where II II ex. denotes the maximum norm on C[O, 1] and where the values
of IE C2 [0, 1] are noise-contaminated and the given functions
ho,"" hN E C 2[0, 1] satisfy Haar's condition. Pantel [11] investigated a
stochastic Remes algorithm of Newton type, i.e., with estimation of second
derivatives (adaptation), and obtained for IE C3 [0, 1], in the form of an
invariance principle, a convergence order somewhat weaker than n - 1/4. In
Section 2 below a stochastic Remes algorithm, without estimation of
second derivatives, is proposed giving a recursive estimation of the alter-
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nant and thus an estimation of the optimal coefficients (lil,"" {/\ and of the
minimal error which plays a key role in the investigation. This algorithm
relates to a certain Newton-type Remes algorithm (see Meinardus [8:
(7.26), (7.27)]) as the Kiefer-Wolfowitz method to the classical Newton
method. For nearly arbitrary starting points one obtains strong con
sistency, i.e., almost sure (a.s.) convergence, of the estimation sequences
under weak assumption on the noise (Sect. 3) and convergence in dis
tribution formulated by an invariance principle, where under usual
assumptions on the noise the order is n 14, even 11 13 for fE ('3[0, I], in
the case of the alternant--as for the Kiefer-Wolfowitz process--and 11 12

in the case of the coefficients and the minimal error (Sect. 4).

2. THE MODEL

Let the real-valued functions./; hil , ... , h N E C 2 [0, 1], N E N, satisfy the
Haar condition, e.g., hk(t) = tk, t E [0, I] (k = 0, ... , N) and f possessing an
(N + 1)th derivative #0 on (0, I). Then, in view of the Tchebycheff
approximation off by linear combinations of ho,... , hN , there exists exactly
one alternant xo* < ... < xt + I; moreover, xo* = 0, xt + I = I, and the
system of equations

N

f'(xJ - I akh~(xJ = 0
k-O

U= 0, ... , N + 1),

U= I, ... , N)

(I)

(2)

for aO, ... ,a N , /EIR, O=:XO<XI<'" <XN<X N + I :=1 has exactly one
solution aij, ...,at, ;.*, xt, ...,xt, where atrho+"'+ath N is the best
approximation of.f, I;. * I> 0 the minimal error and (xl!', x t ,... , x t, x t + 1 )

the above alternant (see Meinardus [7, Sect. 4; 8, Sects. 4.1 and 6.1]).
With K:={x=(xl, ... ,XN)EIR

N
; O<x I <'" <xv<l} let the unique

solution of (I) with fixed XEK be denoted by Ao(x), ..., Av(.X:), L(x). With

and g = ( g 1,,,,, g N), one has on K

(VL(x),g(x))~O

and the equivalence

X E K U= I,..., N)

(3 )

(VL(x), g(x)) = O~VL(x) = 0~ g(x) = 0~ x = x* (4)
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(Meinardus [7, Sect. 5J), where V denotes a gradient. L has either positive
or negative sign throughout on K and x* as the maximum or minimum
point, respectively; there holds

L(x*) = },*, (k=O, ...,N). (5)

The problem of solving (1), (2) is equivalent to finding the unique
extremum point of L which then has to be inserted into Ao,... , AN' L. Both
problems can be treated in the deterministic case by Newton-type Remes
methods if some regularity conditions are fulfilled and sufficiently good
starting values are available ([7, Sect. 5; 8, Sect. 7J). In the theory of
stochastic iteration the adaptive methods of Venter type (see Venter [14J;
Nevel'son and Has'minskii [9J) correspond to the Newton method and use
estimates of first and second derivatives for optimization problems. For the
Tchebycheff approximation problem in the case of noise-corrupted
functions, Pantel [11 J used an adaptive method concerning (1), (2) with
some knowledge on the location of the solution. The algorithm proposed in
the following treats the extremum problem for L in the stochastic case, but
instead of an adaptive method a modification of the gradient-type
Kiefer-Wolfowitz method (see Schmetterer [13 J) in stochastic iteration is
established where VL is replaced by g. It has a more simple structure, uses
only minor knowledge on the location of the alternant, and yields a better
convergence rate.

In Kr:={x=(xl, ...,X",)E[RN; xi-xi_l~r (i=I, ..., N+l)},
r E (0, 1/N), the function L is bounded away from zero. Assume that each
non-vanishing linear combination of./; ho,..., h N has at most N + 1 zero
points in the algebraic sense, which sharpens the above Haar condition
somewhat, but is fulfilled in the above example. Then, if r >°is sufficiently
small, there holds, besides x* E K"

X+t(g(X)+h)EKr for all XE K n tE [0, to(r)J, hE [RN

with maximum norm II h II :s; co(r). (6)

The algorithm described now assumes and uses the knowledge of such a
small r > 0.

The recursion sequence (Xn)nE N for the estimation of x* := (x~,..., x:t)
consists of random vectors X n= (Xnl ,..., X nN ) in Kr defined on a
probability space (Q, m, P). Let IX nE (0,1), (jn E (0, r), n EN, with

IX n ---+° (n ---+ :XJ ), (jn ---+ ° (n ---+ :XJ ).

From (1) with Xi replaced by X ni , where X no :=0, Xn,N+I:= 1, but with
f(Xn;} - Uni instead off(Xn;}, where the real random variables Uni (i = 0,...,
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N + I) describe the contamination of function values, one obtains instead of
Ak(Xn)(k = 0, ..., N) and L(XII ) contaminated real random variables

(k=O, ... , N) and

The column vector (V IIO , ... , VII.N + ,)' is transformed into the column vector
(VIIO "'" VIIJV + 1 )' by a random (N+2)x(N+2)-matrix M(XII ), where the
(N+2)x(N+2)-matrix M(x), xEK, transforms (f(0), f(x,), ... , f(x N),

f(1 ))' into the solution (Ao(x), ... , AN(x), L(x))' of (l) according to
Cramer's rule.

Now the recursion is given by

11 EN, (7)

with arbitrary X, in K" where the N-dimensional random vector
Gil = (Gill"'" GIIN ) is defined by

Glli :=(-I)i l (2b ll ) '(f(Xlli+bn)-f(Xlli-b,,)- V lli )- I
o

- Allkh~(XII)
L k ~O J

(i = I, ... , N) with stochastic contaminations Vni of function values, and
where the random Sn in { - I, 0, 1} fulfills

.I'll = sgl1). * for n sufficiently large a.s. (8)

(see below) and the random til in [0, I] is chosen maximum such that
XII +, is in K r . As usual in stochastic iteration the factors all are used to
guarantee that the the influence of noise is not too large.

Let fJ n :=(1-a,) ""(l-all ) I, 11I:=a,J3 11 , which implies because of
all -+ °the relation

The special case all = (n + I) 'yields fJlI = n + I, Yn = 1. For the estimation
of at (k = 0, ... , N), A* there is used the sequence of real random variables

respectively.

A '- fJ 1 (" A + ... +., A- )nk . - II r 11k J " nk

[ '-fJ--'(" I + ... +" L- )11'- n II I In ll.'

(k = 0, ..., N),

3. ALMOST SURE CONVERGENCE

In this section a.s. convergence of Xn, An" [II defined above to x*,
at (k = 0, ... , N), ). *, respectively, shall be investigated.
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If one has no prior knowledge on the sign of A*, one can construct a
sequence (sn) in { -1, O,l} with (8) in the following two ways. In the case
that the random variables V ni are square integrable with

and the relation

(i = 0, ... , N + 1) (9)

E( V ni I~(n) ~° (n ~ ex; ) a.s. (i = 0, ... , N + 1) (10)

for conditional expectations holds where ~n is the O"-algebra in Q generated
by XI' Vii"'" V n I.i (i=0,..., N+ I), V jj , ... , Vn I.i (i= 1,... , N), one obtains

from martingale theory (see [6, p. 53]), noticing !Y. n = YnIfJ /1' fJ /1 i 00, and the
fact that the random matrix M(X/1) has uniformly bounded elements
because of X/1 in KT ; setting now

S/1 := sgn fJ/1 I(YI II + ... + ';/1l/1),

one obtains (8). In the case that one can take a sequence of noise corrupted
observations of the values of f on a fixed set {xo,..., x N + I} with O::s; X o<
X I < ... < X N < X N + I ::s; 1 parallel to the stochastic algorithm, then in an
analogous manner with Sn as signum of an arithmetic mean of con
taminated function values of L, one obtains (8), if the (N + 1)-dimensional
vectors of observation errors have zero expectation vector and fulfill the
strong law of large numbers.

F rom now on (8) shall be assumed. As to the observation errors, let hold
the conditions

fJ/1 I(YI V jj + .. · +Y/1V/1i)~O (n~ oo)a.s. (i=0,... , N+ I),

fi/1 I(YII Viii + ... + Yn IV/1il) = 0(1) a.s. (i= 0,... , N + 1),

(n ~ (0) a.s. (i = 1,..., N),

or the conditions (9), (1 0), together with

( II )

(12 )

(13 )

(i = 1,..., N) (14 )

and E(V/1il~(/1)=O (or weaker),

(j,-; I E( V/1i I ~(/1) ~ 0 (n ~ 00) a.s. (i = 1,..., N). ( 15)
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It should be mentioned that, e.g., (11) is implied by (9), (10) (compare the
consideration on .1',,), also by

£U"i=O, £U"iUmi=O (n i=m),

(i = 0, ... , N + 1)

(according to a theorem of Rademacher and Mensov, see [12, Sect. 3.2]),
further by

£U"i=O,

(i = 0, ... , N + 1)

for some p, q with °~ 2p < q < I (according to an argument of Cramer and
Leadbetter [3, pp. 94-96]). In stochastic iteration theory, Ljung [5] uses
an assumption Bl which is defined by a recursion, but can be brought into
the simple form (11) with another notation, and gives a further sufficient
condition for it.

The following theorem yields a.s. convergence of the algorithm.

THEOREM I. Under the general assumptions of Section 2 and the
assumptions (8) and (11-13) or (9), (10), (14), (15), there holds

X,,-+ x*, (k=O, ..., N), (n -+x; ) a.s. (16 )

Prool The main part consists in proving X" -+ x* a.s. Without loss of
generality one can assume

.1'" = sgn /* = 1 forall nEN .

The recursion for (X,J can be written in the form

(17 )

with an N-dimensional random vector W;, and an (N + 2)-dimensional ran
dom vector W~ and a function R on K with values in the linear space of
N x (N + 2)-matrices normed by the maximum sum of absolute values of a
row. As to regularity conditions there is only used that g, VL are con
tinuous and R satisfies a Lipschitz condition on K r • From (11-13) there
follows a.s.

fJ" I(YI W; + ... + 1'" W~) -+ 0,

/3" '(I', II W[II + ... + 'I'" II W;;II) = 0(1)

(18 )

(19)

(20)
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with maximum norm II lion [RN. From (9), (10), (14), (15), there follow
(18) and

by the above martingale argument. Because the latter relation is com
prehended by (18) together with R(x) == 0, it suffices to regard (17) under
the conditions (18-20). Neglecting a set of probability measure zero there is
used a pathwise consideration in the following, with the same notation for
the realizations as for the random variables themselves.

There holds

~n W;, = Z;, + ~n U;,

where

Choose I: E (0, max {II g(x)ll; x E K,}) and no EN such that

1\I z~11 <~
I k =n

For the sequence (X;,) defined by

for n~no.

X;,:=Xn , for n = 1,..., no,

for n~no, (21)

with maximum t~ E [0, 1] such that X~ + 1 E K" one obtains

for nEN.

Let w, be the modulus of continuity of g, M, a Lipschitz constant of Ron
K" Rn ;= (R(X;,) - R(Xn )) W;;, and, by (20),

n

C 1 :=M1 suPf3~' L "'/k II W~II·
n k = 1

Noticing

with
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x;, + I = X;, + (,[CX,,( g(X;,) - R(X;,) W;; + Y,,) + Z;;]

If the sequence (X;;) is defined by X'; := X', ,

X;; + , := X;; + t;;cx,,[g(X;,) - R(X;,) W;; + Y,,]

(n EN).

for n EN,

with maximum t;; E [0, 1] such that X;; + I E Kr , there is obtained

II X;; - X;, II ~ 4c I D for nE N.

By partial summation, (19), Lipschitz continuity of R on Kp (21), and
(20), one obtains

Regarding

with

one has

"u;;' := #" II I, h R(X~) WZ ---> °
k~1

cx" R(X;,) W;; = Z;;' +CX" u;;'

(n ---> CD ).

with

Y,; := -U;;'" I + Y,,- (g(X;;) - g(X;,)),

Choosing nt ? no such that II Lk ~" Z;;' II < (e/4) for n? nct, there is defined

X;;':=x;; for n = 1,..., nt,

for n? nct,
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with maximum t~' such that X~'+, EKy. Then II X;;' - X;; II ~ e,
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for n EN, (22)

where

Y,~* = Y,~ - (g(X;;') - g(X;;)),

lim II Y,~* II ~ (Ie + 2w l (e) + w,(4c 1e) =: w(e),

II X,,'" - X"II ~ 2£ + 4c, e for nEN. (23)

Now, with co('r), to(r) from (6), choose e* > 0 such that w( £*) < (1/2) co(r)
and

<Hmax{IIVL(x)II;XEKr }) 1 min{(VL(x),g(x));XEKr , II g(x)11 ~e},

further n * E N such that

II Y,~*II <2w(e*), for n ~ n*.

Thus t;;' = I for n ~ n*. By (22), a Taylor expansion for L(X;;'+ 1) as usual in
optimization theory and uniform continuity of VL on Kyo one obtains, with
suitable n** ~ n*,

L(X;;'+ tl ~ L(X;;') + ~C(,,(V'L(X;;'), g(X;;'))

for those n ~ n** with II g( X;;') II > e.

There holds

h(p) :=sup{A*-L(x);xEKyo II g(x)11 ~p}->O

p((J) := sup{ II g(x)II; x EKyo i* - L(x) ~ (J} -> 0

Relation (24) yields

(p -> +0),

((J -> +0).

(24)

II g(X;;')11 ~t: and infinitely often,

by (3), (4), and 1~C(" = oc, but otherwise a monotonicity property, and thus,
together with L(X;;' ~ ,) - L(X;;') -> 0, the relations

limL(X;;') ~ i* - h(r.),

and thus, because of (23),

lim II g(X;;')11 ,,;;p(h(e) + e)

Therefore

X,,-> x*, (n -> oc ). (25)

640i49/1-7
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(n ->X; )

shall be shown, also by a pathwise consideration. There holds the represen
tation

"
[" = fJ,-; I L Ik(L(Xd + r(Xk) WZ)

k~1

with WZ as in (17) and an 1 x (N + 2 )-matrix valued function r on K
satisfying a Lipschitz condition on Kr • Because of (25), it suffices to prove

"
fJ,; I L Ikr(Xd WZ -> °

k~1

(n -> ex)),

but this follows from r(X,,)-r(x*)->O, (19), (20). In the same way one
obtains

(n -> (0), k = 0, ... , N.

4. RATE OF CONVERGENCE

For the estimation sequences (X,,), (A"d(k = 0, ... , N), ([,,) the rate of
convergence is investigated in the context of distributional convergence.
Under the second order differentiability assumptions of Section 2, a central
limit theorem with convergence order n - 1/4 for X" is obtained, which in the
more general form of an invariance principle (functional central limit
theorem) yields a distributional limit theorem with convergence order n 1/2

for A"k, [" also given in the more general form of an invariance principle.
Besides the assumptions of Theorem I there is assumed

Cl.. n ~an-

the stability condition

(j,,~dn 1/4 (a >0, d> 0), (26)

further,

sup EU~;< CfJ,

"

(27)

(28')

E( U,,; 1111,,) = ° (i = 0, ..., N + I; n EN), (29')



A STOCHASTIC REMES ALGORITHM

with Ill n as in Section 3, and the Lindeberg-type condition
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(i = 0, ... , N + 1) (30')

and the analogous conditions (28"), (29"), (30") for Vni(i= 1,..., N; nE N).
Assume that the arithmetic mean of the first n conditional covariance
matrices of the (2N + 2)-dimensional random vectors with coordinates
Vki ( - 1r + I sgn A*(i = 1,... , N), Ukj(i = 0,..., N + 1) given Illkl k = 1, ... , n,
converges in probability for n -> CJJ to the covariance matrix

(31 )

where in an obvious notation S] is an N x N-matrix, SIJ an N x (N + 2)
matrix, Sm = S;" SlY an (N + 2) x (N + 2)-matrix.

In this section, X,,, x* are column vectors. There are used the following
notations. Let A:= diag {Ill,·.·, Il N} with

Ilj := Ir(x j*) - £ at hZ(XJ!
k~O

(i= 1,..., N),

and H o,.. , H N+ I be the Hessians of Au,..., AN, L, respectively, at x*.
Further let ( be an (2N + 2 )-dimensional Brownian motion with the N
dimensional component (* = (( 1 , ••• , (N)' and the (N + 2)-dimensional com
ponent (**, with ((0) = 0, E(( 1) = °and covariance matrix

S.=( S,
. M(x*) Sill

SIJ M(x*)' )

M(x*) S,yM(x*)'

of (( 1), and G = (G 1' ... ' G N )' be the N-dimensional Gaussian Markov
process with

G,(O)=o, Gi(t)=t-"l'i+ 3;4 f V"!l, 3/4dC(v), tE(O, I]
(IU]

(i = 1,..., N).

Now the following invariance principle (functional limit theorem) can be
formulated.

THEOREM 2. Let the assumptions of Theorem 1 together with conditions
(26)-(31) hold. Then the sequence of random elements (Zn) in C ~2N+2[0, 1]
with maximum norm which are defined by

Z,,(t):=n 1;2R[nl]+(nt-[nt])n 1;2(R["I]+I-R[ntl)' t E [0, 1],
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(
n14(X,,-x*) )

R,,:= . - . * - * _ , * 'II(A nO -ao ,... , AnN - a v , L n- J. )

converges in distribution to

(L t'I'(G(J)' /loG(J)), ..., G~t), liN, ,G(J)' dt·· (").

Proof of Theorem 2. Noticing (16), (26), (27), (29'), (29"), one can take
recursion (17), which together with sgn A* = I is used without loss of
generality, into the form

Xn+l-x*=Xn-x*-n lAn(Xn-x*)+n 34DnWn+n 5.4Tn

with N-dimensional random column vectors W", Tn, random N x N
matrices A n --> aA a.s., Dn := (1/2) n 3/4 'Xj(\ --> ('X/2d), Tn --> 0 a.s., aJ1,> ~

(i = I, ... , N), E( Wnlllln) = O. Let

V n :=(VnO "'" Vn . V + I )" Un := M(Xnl Vn'

for liEN.

Then the above recursion can be supplemented by the recursion

Yn+I=Yn-n 1(~+o(I))Yn+n 14(I+o(I))Un.

For the (2N + 2 )-dimensional random vectors Wn with components W"
and Un' there holds

sup E II Wnll l < 'x, E( Wnllll n) = 0 (n EN)

because of (28'), (28"), E( W n Illlnl = 0, (29'), and boundedness of M on K r ;
further, there holds a Lindeberg-type condition and that the arithmetic
mean of the first n conditional convariance matrices of W, given Ill"
k = I, ... , n, converges in probability to S, because of (30'), (30"), and (31 ),
respectively, and M(Xn ) --> M(x*) a.s.

Let Zn be defined analogously to Z,p but with the (2N + 2 )-dimensional
random vector Rn having components n3/4 (Xn- x*) and n3/4 Yn instead of
R n . Now an invariance principle of Berger [IJ and Pantel [II, Sect. 8.3J
which generalizes results of Fabian [4] and Walk [15] on recursive
schemes can be applied and yields convergence of (Z,J in distribution to
the random element in e 1R 2S.2 [0, IJ with components G and (**. (For an
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easily accessible formulation of Berger's result [with a slightly differing
assumption on W,,] see Nixdorf [10, pp.41-43].)

Finally, from the convergence result on (Z,,), one obtains the assertion
on (2,,) regarding (5), by use of Skorokhod's representation theorem (see,
e.g., [2, Sect. 3]) which allows one to argue for a.s. convergence instead of
distributional convergence.

Remark. For Theorem 2 the evaluation functional obtained by inserting
t = I yields distributional convergence of n -1/2 R" to an (2N + 2)-dimen
sional random vector and thus the orders of convergence mentioned above.
[In the casefEC3 [0, I] with 15,,~dn-I/6, factor 3 instead of4 in (27), in a
similar manner one obtains a functional central limit theorem with con
vergence order n 1/3 for X" and n 1/2 for (A"o, ... , A"N' I,,), where in the
latter case for the limit process no integral term appears.] The reason that
for the estimation of the optimal vector (at ,... , a~, i *) in the Tchebycheff
approximation of fE C2 [0, I] convergence order n 1/2 is achieved dif
ferently to convergence orders in stochastic iteration for other optimization
problems lies in the validity of (5), and in the fact that in the auxiliary
linear discrete Tchebycheff approximation problem given by (I) the obser
vation errors U"i (i = 0, ... , N + I) are not endowed with a convergence rate
diminishing factor 15" I as the V"i (i = I, ... , N).
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